Part Number Hot Search : 
TE5544N MOB34D C2002 XX1KTR7 2N6292 TGA4832 MMBD7 NTE251
Product Description
Full Text Search
 

To Download NCP5111 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 NCP5111 High Voltage, High and Low Side Driver
The NCP5111 is a high voltage power gate driver providing two outputs for direct drive of 2 N-channel power MOSFETs or IGBTs arranged in a half-bridge configuration. It uses the bootstrap technique to ensure a proper drive of the high-side power switch.
Features http://onsemi.com MARKING DIAGRAMS
1 SOIC-8 D SUFFIX CASE 751 8 P5111 ALYW G 1
* * * * * * * * * * * * *
High Voltage Range: up to 600 V dV/dt Immunity 50 V/nsec Gate Drive Supply Range from 10 V to 20 V High and Low Drive Outputs Output Source / Sink Current Capability 250 mA / 500 mA 3.3 V and 5 V Input Logic Compatible Up to VCC Swing on Input Pins Extended Allowable Negative Bridge Pin Voltage Swing to -10 V for Signal Propagation Matched Propagation Delays between Both Channels One Input with Internal Fixed Dead Time (650 ns) Under VCC LockOut (UVLO) for Both Channels Pin-to-Pin Compatible with Industry Standards These are Pb-Free Devices
NCP5111 AWLG YYWW PDIP-8 P SUFFIX CASE 626 NCP5111 = Specific Device Code A = Assembly Location L or WL = Wafer Lot Y or YY = Year W or WW = Work Week G or G = Pb-Free Package (Note: Microdot may be in either location)
Typical Applications
* Half-bridge Power Converters
PINOUT INFORMATION VCC IN GND DRV_LO 1 2 3 4 8 7 6 5 VBOOT DRV_HI BRIDGE NC
ORDERING INFORMATION
Device NCP5111PG NCP5111DR2G Package PDIP-8 (Pb-Free) Shipping 50 Units / Rail
SOIC-8 2500 / Tape & Reel (Pb-Free)
For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.
(c) Semiconductor Components Industries, LLC, 2008
1
March, 2008 - Rev. 3
Publication Order Number: NCP5111/D
NCP5111
Vbulk +
C1 D4 Q1 C3 GND U1 NCP5111 1 8 VBOOT Vcc 2 7 IN DRV_HI 3 6 Bridge GND 4 5 DRV_LO NC C4 Lf OutQ2 C6 D2 T1 D1 L1 + C3 Out+
GND Vcc
NCP1395
GND
GND GND D3 GND U2 R1
Figure 1. Typical Application Resonant Converter (LLC type)
+
Vbulk
C1 D4 Q1 C3 GND U1 NCP5111 1 8 Vcc VBOOT 2 7 IN DRV_HI 3 6 Bridge GND 4 5 DRV_LO NC T1 C4 D1 C5 L1 + C3 OutD2 C6 Out+
GND Vcc
SG3526 MC34025 TL594 NCP1561 GND GND
Q2
GND D3
R1
GND
U2
Figure 2. Typical Application Half Bridge Converter
VCC
VCC
UV DETECT PULSE TRIGGER LEVEL SHIFTER SQ RQ UV DETECT
VBOOT
DRV_HI
IN
BRIDGE VCC
DEAD TIME GENERATION
GND
GND
DELAY
DRV_LO
GND GND
Figure 3. Detailed Block Diagram http://onsemi.com
2
NCP5111
PIN DESCRIPTIONS
Pin No. 1 2 3 4 5 6 7 8 Pin Name VCC IN GND DRV_LO NC BRIDGE DRV_HI VBOOT Low side and main power supply Logic Input Ground Low side gate drive output Not Connected Bootstrap return or high side floating supply return High side gate drive output Bootstrap power supply Pin Function
MAXIMUM RATINGS
Rating VCC VCC_transient VBRIDGE VBRIDGE VBOOT-VBRIDGE VDRV_HI VDRV_LO dVBRIDGE/dt VIN Main power supply voltage Main transient power supply voltage: IVCC_max = 5 mA during 10 ms VHV: High Voltage BRIDGE pin Allowable Negative Bridge Pin Voltage for IN_LO Signal Propagation to DRV_LO VHV: Floating supply voltage VHV: High side output voltage Low side output voltage Allowable output slew rate Inputs IN ESD Capability: - HBM model (all pins except pins 6-7-8) - Machine model (all pins except pins 6-7-8) Latchup capability per JEDEC JESD78 RqJA Power dissipation and Thermal characteristics PDIP-8: Thermal Resistance, Junction-to-Air SO-8: Thermal Resistance, Junction-to-Air Maximum Operating Junction Temperature C/W 100 178 +150 C Symbol Value -0.3 to 20 23 -1 to 600 -10 -0.3 to 20 VBRIDGE - 0.3 to VBOOT + 0.3 -0.3 to VCC + 0.3 50 -1.0 to VCC + 0.3 2 200 Unit V V V V V V V V/ns V kV V
TJ_max
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
http://onsemi.com
3
NCP5111
ELECTRICAL CHARACTERISTIC (VCC = Vboot = 15 V, VGND = Vbridge, -40C < TJ < 125C, Outputs loaded with 1 nF)
TJ -40C to 125C Rating OUTPUT SECTION Output high short circuit pulsed current VDRV = 0 V, PW v 10 ms (Note 1) Output low short circuit pulsed current VDRV = Vcc, PW v 10 ms (Note 1) Output resistor (Typical value @ 25C) Source Output resistor (Typical value @ 25C) Sink High level output voltage, VBIAS-VDRV_XX @ IDRV_XX = 20 mA Low level output voltage VDRV_XX @ IDRV_XX = 20 mA DYNAMIC OUTPUT SECTION Turn-on propagation delay (Vbridge = 0 V) (Note 2) Turn-off propagation delay (Vbridge = 0 V or 50 V) (Notes 2 and 3) Output voltage rise time (from 10% to 90% @ Vcc = 15 V) with 1 nF load Output voltage fall time (from 90% to 10% @VCC = 15 V) with 1 nF load Propagation delay matching between the High side and the Low side @ 25C (Note 4) Internal fixed dead time (Note 5) INPUT SECTION Low level input voltage threshold Input pull-down resistor (VIN < 0.5 V) High level input voltage threshold Logic "1" input bias current @ VIN = 5 V @ 25C Logic "0" input bias current @ VIN = 0 V @ 25C SUPPLY SECTION Vcc UV Start-up voltage threshold Vcc UV Shut-down voltage threshold Hysteresis on Vcc Vboot Start-up voltage threshold reference to bridge pin (Vboot_stup = Vboot - Vbridge) Vboot UV Shut-down voltage threshold Hysteresis on Vboot Leakage current on high voltage pins to GND (VBOOT = VBRIDGE = DRV_HI = 600 V) Consumption in active mode (Vcc = Vboot, fsw = 100 kHz and 1 nF load on both driver outputs) Consumption in inhibition mode (Vcc = Vboot) Vcc current consumption in inhibition mode Vboot current consumption in inhibition mode 1. 2. 3. 4. 5. Vcc_stup Vcc_shtdwn Vcc_hyst Vboot_stup Vboot_shtdwn Vboot_shtdwn IHV_LEAK ICC1 ICC2 ICC3 ICC4 8.0 7.3 0.3 8.0 7.3 0.3 8.9 8.2 0.7 8.9 8.2 0.7 5 4 250 200 50 9.9 9.1 9.9 9.1 40 5 400 V V V V V V mA mA mA mA mA VIN RIN VIN IIN+ IIN2.3 200 5 0.8 25 2.0 V kW V mA mA tON tOFF tr tf Dt DT 400 750 100 85 35 30 650 1170 170 160 75 60 1000 ns ns ns ns ns ns IDRVsource IDRVsink ROH ROL VDRV_H VDRV_L 250 500 30 10 0.7 0.2 60 20 1.6 0.6 mA mA W W V V Symbol Min Typ Max Units
Parameter guaranteed by design. TON = TOFF + DT. Turn-off propagation delay @ Vbridge = 600 V is guaranteed by design. See characterization curve for Dt parameters variation on the full range temperature. Timing diagram definition see: Figure 5 and Figure 6.
http://onsemi.com
4
NCP5111
IN
DRV_HI
DRV_LO
Note: DRV_HI output is in phase with the input. Figure 4. Input/Output Timing Diagram
IN
50% ton tr
50%
toff 90% Dead Time DRV_HI 10% toff tf 90%
tf
10% Dead Time tr
DRV_LO 90% 10% ton = toff + DT ton 10% 90%
Figure 5. Timing Definitions
IN
50%
50%
toff_HI 90% 10% toff_LO Dead Time 2 DRV_LO 90% Matching Delay 1 = toff_HI - toff_LO Matching Delay 2 = (toff_LO + DT1) - (toff_HI + DT2) 10%
Dead Time 1 DRV_HI
Figure 6. Matching Propagation Delay
http://onsemi.com
5
NCP5111
CHARACTERIZATION CURVES
900 TON, PROPAGATION DELAY (ns) TON, PROPAGATION DELAY (ns) 850 800 750 700 650 600 550 500 450 400 10 12 14 16 VCC, VOLTAGE (V) 18 20 TON Low Side TON High Side 900 850 800 750 700 650 600 550 500 450 400 -40 -20 0 20 40 60 80 TEMPERATURE (C) 100 120 TON High Side TON Low Side
Figure 7. Turn ON Propagation Delay vs. Supply Voltage (VCC = VBOOT)
140 TOFF, PROPAGATION DELAY (ns) TOFF, PROPAGATION DELAY (ns) 120 100 80 60 TOFF Low Side 40 20 0 10 12 14 16 18 20 VCC, VOLTAGE (V) TOFF High Side 160 140 120 100 80 60 40 20 0 -40
Figure 8. Turn ON Propagation Delay vs. Temperature
TOFF Low & High Side
-20
0
20 40 60 80 TEMPERATURE (C)
100
120
Figure 9. Turn OFF Propagation Delay vs. Supply Voltage (VCC = VBOOT)
900 TOFF PROPAGATION DELAY (ns) TON, PROPAGATION DELAY (ns) 850 800 750 700 650 600 550 500 450 400 0 10 20 30 40 50 BRIDGE PIN VOLTAGE (V) 160 140 120 100 80 60 40 20 0 0
Figure 10. Turn OFF Propagation Delay vs. Temperature
10
20
30
40
50
BRIDGE PIN VOLTAGE (V)
Figure 11. High Side Turn ON Propagation Delay vs. VBRIDGE Voltage
Figure 12. High Side Turn OFF Propagation Delay vs. VBRIDGE Voltage
http://onsemi.com
6
NCP5111
CHARACTERIZATION CURVES
160 140 TON, RISETIME (ns) TON, RISETIME (ns) 120 100 80 60 40 tr Low Side 20 0 10 12 14 16 VCC, VOLTAGE (V) 18 20 20 0 -40 -20 0 20 40 60 80 TEMPERATURE (C) 100 120 tr High Side
160 140 120 100 80 60 40 tr Low Side tr High Side
Figure 13. Turn ON Risetime vs. Supply Voltage (VCC = VBOOT)
80 70 TOFF, FALLTIME (ns) TOFF, FALLTIME (ns) 60 50 40 30 20 10 0 10 tf High Side tf Low Side 60 50
Figure 14. Turn ON Risetime vs. Temperature
tf Low Side 40 30 20 10 0 -40
tf High Side
12
14 16 VCC, VOLTAGE (V)
18
20
-20
0
20 40 60 80 TEMPERATURE (C)
100
120
Figure 15. Turn OFF Falltime vs. Supply Voltage (VCC = VBOOT)
PROPAGATION DELAY MATCHING (ns) 35 30 DEAD TIME (ns) 25 20 15 10 5 0 -40 1000 900 800 700 600 500 400 -40
Figure 16. Turn OFF Falltime vs. Temperature
-20
0
20
40
60
80
100
120
-20
0
20
40
60
80
100
120
TEMPERATURE (C)
TEMPERATURE (C)
Figure 17. Propagation Delay Matching Between High Side and Low Side Driver vs. Temperature http://onsemi.com
7
Figure 18. Dead Time vs. Temperature
NCP5111
CHARACTERIZATION CURVES
1.4 LOW LEVEL INPUT VOLTAGE THRESHOLD (V) 10 12 14 16 18 20 1.2 1 0.8 0.6 0.4 0.2 0 VCC, VOLTAGE (V) 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -40
LOW LEVEL INPUT VOLTAGE THRESHOLD (V)
-20
0
20 40 60 TEMPERATURE (C)
80
100
120
Figure 19. Low Level Input Voltage Threshold vs. Supply Voltage (VCC = VBOOT)
2.5 HIGH LEVEL INPUT VOLTAGE THRESHOLD (V) HIGH LEVEL INPUT VOLTAGE THRESHOLD (V) 2.5
Figure 20. Low Level Input Voltage Threshold vs. Temperature
2
2.0
1.5
1.5
1
1.0
0.5
0.5
0 10 12 14 16 VCC, VOLTAGE (V) 18 20
0.0 -40
-20
0
20 40 60 TEMPERATURE (C)
80
100
120
Figure 21. High Level Input Voltage Threshold vs. Supply Voltage (VCC = VBOOT)
4 LOGIC "0" INPUT CURRENT (mA) 3.5 3 2.5 2 1.5 1 0.5 0 10 12 14 16 VCC, VOLTAGE (V) 18 20 LOGIC "0" INPUT CURRENT (mA) 6 5.5 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5
Figure 22. High Level Input Voltage Threshold vs. Temperature
0 -40
-20
0
20 40 60 TEMPERATURE (C)
80
100
120
Figure 23. Logic "0" Input Current vs. Supply Voltage (VCC = VBOOT)
Figure 24. Logic "0" Input Current vs. Temperature
http://onsemi.com
8
NCP5111
CHARACTERIZATION CURVES
8 LOGIC "1" INPUT CURRENT (mA) 7 6 5 4 3 2 1 0 10 12 14 16 VCC, VOLTAGE (V) 18 20 LOGIC "1" INPUT CURRENT (mA) 10
8
6
4
2
0 -40
-20
0
20
40
60
80
100
120
TEMPERATURE (C)
Figure 25. Logic "1" Input Current vs. Supply Voltage (VCC = VBOOT)
1 LOW LEVEL OUTPUT VOLTAGE (V) LOW LEVEL OUTPUT VOLTAGE THRESHOLD (V) 1.0
Figure 26. Logic "1" Input Current vs. Temperature
0.8
0.8
0.6
0.6
0.4
0.4
0.2
0.2
0 10 12 14 16 VCC, VOLTAGE (V) 18 20
0.0 -40
-20
0
20 40 60 80 TEMPERATURE (C)
100
120
Figure 27. Low Level Output Voltage vs. Supply Voltage (VCC = VBOOT)
1.6 HIGH LEVEL OUTPUT VOLTAGE (V) HIGH LEVEL OUTPUT VOLTAGE THRESHOLD (V) 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -40
Figure 28. Low Level Output Voltage vs. Temperature
1.2
0.8
0.4
0 10
12
14 16 VCC, VOLTAGE (V)
18
20
-20
0
20 40 60 TEMPERATURE (C)
80
100
120
Figure 29. High Level Output Voltage vs. Supply Voltage (VCC = VBOOT)
Figure 30. High Level Output Voltage vs. Temperature
http://onsemi.com
9
NCP5111
CHARACTERIZATION CURVES
400 OUTPUT SOURCE CURRENT (mA) 350 300 250 200 150 100 50 0 10 12 14 16 VCC, VOLTAGE (V) 18 20 Isrc Low Side Isrc High Side OUTPUT SOURCE CURRENT (mA) 400 350 300 250 200 150 100 50 0 -40 -20 0 20 40 60 80 100 120 Isrc Low Side Isrc High Side
TEMPERATURE (C)
Figure 31. Output Source Current vs. Supply Voltage (VCC = VBOOT)
Figure 32. Output Source Current vs. Temperature
600 OUTPUT SINK CURRENT (mA) 500 400 Isrc Low Side 300 200 100 0 10 OUTPUT SINK CURRENT (mA) Isrc High Side
600 Isrc High Side 500 400 300 200 100 0 -40 Isrc Low Side
12
14
16
18
20
-20
0
20
40
60
80
100
120
VCC, VOLTAGE (V)
TEMPERATURE (C)
Figure 33. Output Sink Current vs. Supply Voltage (VCC = VBOOT)
HIGH SIDE LEAKAGE CURRENT ON HV PINS TO GND (mA) 0.2 20 LEAKAGE CURRENT ON HIGH VOLTAGE PINS (600 V) to GND (mA)
Figure 34. Output Sink Current vs. Temperature
0.16
15
0.12
10
0.08
5
0.04
0 0 100 200 300 400 500 600 HV PINS VOLTAGE (V)
0 -40
-20
0
20
40
60
80
100
120
TEMPERATURE (C)
Figure 35. Leakage Current on High Voltage Pins (600 V) to Ground vs. VBRIDGE Voltage (VBRIGDE = VBOOT = VDRV_HI) http://onsemi.com
10
Figure 36. Leakage Current on High Voltage Pins (600 V) to Ground vs. Temperature (VBRIDGE = VBOOT = VDRV_HI = 600 V)
NCP5111
CHARACTERIZATION CURVES
100 VBOOT CURRENT SUPPLY (mA) 0 4 8 12 16 20 VBOOT SUPPLY CURRENT (mA) 100
80
80
60
60
40
40
20
20
0
0 -40
-20
0
20
40
60
80
100
120
VBOOT, VOLTAGE (V)
TEMPERATURE (C)
Figure 37. VBOOT Supply Current vs. Bootstrap Supply Voltage
240 VCC SUPPLY CURRENT (mA) VCC CURRENT SUPPLY (mA) 200 160 120 80 40 0 0 4 8 12 16 20 VCC, VOLTAGE (V) 400
Figure 38. VBOOT Supply Current vs. Temperature
300
200
100
0 -40
-20
0
20
40
60
80
100
120
TEMPERATURE (C)
Figure 39. VCC Supply Current vs. VCC Supply Voltage
10.0 UVLO STARTUP VOLTAGE (V) 9.8 9.6 9.4 9.2 9.0 8.8 8.6 8.4 8.2 8.0 -40 -20 0 20 40 60 80 100 120 VBOOT UVLO Startup UVLO SHUTDOWN VOLTAGE (V) VCC UVLO Startup 9.0 8.8 8.6 8.4 8.2 8.0 7.8 7.6 7.4 7.2 7.0 -40
Figure 40. VCC Supply Current vs. Temperature
VCC UVLO Shutdown
VBOOT UVLO Shutdown
-20
0
20
40
60
80
100
120
TEMPERATURE (C)
TEMPERATURE (C)
Figure 41. UVLO Startup Voltage vs. Temperature
Figure 42. UVLO Shutdown Voltage vs. Temperature
http://onsemi.com
11
NCP5111
CHARACTERIZATION CURVES
25 ICC+ IBOOT CURRENT SUPPLY (mA) ICC+ IBOOT CURRENT SUPPLY (mA) CLOAD = 1 nF/Q = 15 nC 20 35 30 25 20 15 10 5 0 0 RGATE = 10 R RGATE = 22 R CLOAD = 2.2 nF/Q = 33 nC RGATE = 0 R
15
10
5 RGATE = 0 R to 22 R 0 0 100 200 300 400 500 600 SWITCHING FREQUENCY (kHz)
100
200 300 400 500 SWITCHING FREQUENCY (kHz)
600
Figure 43. ICC1 Consumption vs. Switching Frequency with 15 nC Load on Each Driver @ VCC = 15 V
50 ICC+ IBOOT CURRENT SUPPLY (mA) 45 40 35 30 25 20 15 10 5 0 0 100 200 300 400 500 600 RGATE = 22 R RGATE = 10 R CLOAD = 3.3 nF/Q = 50 nC RGATE = 0 R ICC+ IBOOT CURRENT SUPPLY (mA) 70 60 50 40 30 20 10 0 0
Figure 44. ICC1 Consumption vs. Switching Frequency with 33 nC Load on Each Driver @ VCC = 15 V
CLOAD = 6.6 nF/Q = 100 nC
RGATE = 10 R RGATE = 22 R RGATE = 0 R
100
SWITCHING FREQUENCY (kHz)
200 300 400 500 SWITCHING FREQUENCY (kHz)
600
Figure 45. ICC1 Consumption vs. Switching Frequency with 50 nC Load on Each Driver @ VCC = 15 V
Figure 46. ICC1 Consumption vs. Switching Frequency with 100 nC Load on Each Driver @ VCC = 15 V
http://onsemi.com
12
NCP5111
PACKAGE DIMENSIONS
8 LEAD PDIP CASE 626-05 ISSUE L
NOTES: 1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS). 3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. DIM A B C D F G H J K L M N MILLIMETERS MIN MAX 9.40 10.16 6.10 6.60 3.94 4.45 0.38 0.51 1.02 1.78 2.54 BSC 0.76 1.27 0.20 0.30 2.92 3.43 7.62 BSC --10_ 0.76 1.01 INCHES MIN MAX 0.370 0.400 0.240 0.260 0.155 0.175 0.015 0.020 0.040 0.070 0.100 BSC 0.030 0.050 0.008 0.012 0.115 0.135 0.300 BSC --10_ 0.030 0.040
8
5
-B1 4
F
NOTE 2
-AL
C -TSEATING PLANE
J N D K
M
M TA B
H
G 0.13 (0.005)
M M
http://onsemi.com
13
NCP5111
PACKAGE DIMENSIONS
SOIC-8 NB CASE 751-07 ISSUE AJ
-XA
8 5
B
1 4
S
0.25 (0.010)
M
Y
M
-YG C -ZH D 0.25 (0.010)
M SEATING PLANE
K
NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07. DIM A B C D G H J K M N S MILLIMETERS MIN MAX 4.80 5.00 3.80 4.00 1.35 1.75 0.33 0.51 1.27 BSC 0.10 0.25 0.19 0.25 0.40 1.27 0_ 8_ 0.25 0.50 5.80 6.20 INCHES MIN MAX 0.189 0.197 0.150 0.157 0.053 0.069 0.013 0.020 0.050 BSC 0.004 0.010 0.007 0.010 0.016 0.050 0_ 8_ 0.010 0.020 0.228 0.244
N
X 45 _
0.10 (0.004) M ZY
S
J
X
S
SOLDERING FOOTPRINT*
1.52 0.060
7.0 0.275
4.0 0.155
0.6 0.024
1.270 0.050
SCALE 6:1 mm inches
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.
The product described herein is covered by U.S. patents: 6,097,075; 7,176,723; 6,362,067. There may be some other patents pending.
ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your loca Sales Representative
http://onsemi.com
14
NCP5111/D


▲Up To Search▲   

 
Price & Availability of NCP5111

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X